Using an Unmanned Aerial Vehicle-Based Digital Imaging System to Derive a 3D Point Cloud for Landslide Scarp Recognition

نویسندگان

  • Abdulla Al-Rawabdeh
  • Fangning He
  • Adel Moussa
  • Naser El-Sheimy
  • Ayman W. Habib
چکیده

Landslides often cause economic losses, property damage, and loss of lives. Monitoring landslides using high spatial and temporal resolution imagery and the ability to quickly identify landslide regions are the basis for emergency disaster management. This study presents a comprehensive system that uses unmanned aerial vehicles (UAVs) and Semi-Global dense Matching (SGM) techniques to identify and extract landslide scarp data. The selected study area is located along a major highway in a mountainous region in Jordan, and contains creeping landslides induced by heavy rainfall. Field observations across the slope body and a deformation analysis along the highway and existing gabions indicate that the slope is active and that scarp features across the slope will continue to open and develop new tension crack features, leading to the downward movement of rocks. The identification of landslide scarps in this study was performed via a dense 3D point cloud of topographic information generated from high-resolution images captured using a low-cost UAV and a target-based camera calibration procedure for a low-cost large-field-of-view camera. An automated approach was used to accurately detect and extract the landslide head scarps based on geomorphological factors: the ratio of normalized Eigenvalues (i.e., λ1/λ2 ě λ3) derived using principal component analysis, topographic surface roughness index values, and local-neighborhood slope measurements from the 3D image-based point cloud. Validation of the results was performed using root mean square error analysis and a confusion (error) matrix between manually digitized landslide scarps and the automated approaches. The experimental results using the fully automated 3D point-based analysis algorithms show that these approaches can effectively distinguish landslide scarps. The proposed algorithms can accurately identify and extract landslide scarps with centimeter-scale accuracy. In addition, the combination of UAV-based imagery, 3D scene reconstruction, and landslide scarp recognition/extraction algorithms can provide flexible and effective tool for monitoring landslide scarps and is acceptable for landslide mapping purposes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Reconstruction of a Landslide by Application of UAV & Structure from Motion

Landslides exhibit complex geomorphologies and are very difficult to measure. Photogrammetric methods are promising tools to overcome such problems by reconstructing 3D from overlapping images of the surface. Airborne and terrestrial image acquisition platforms are possible data sources for comprehensive digital landslide modelling. This study presents a computer vision application of the struc...

متن کامل

Point Cloud Generation from Aerial Image Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera

The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technolo...

متن کامل

Landslide Fissure Inference Assessment by ANFIS and Logistic Regression Using UAS-Based Photogrammetry

Unmanned Aerial Systems (UAS) are now capable of gathering high-resolution data, therefore, landslides can be explored in detail at larger scales. In this research, 132 aerial photographs were captured, and 85,456 features were detected and matched automatically using UAS photogrammetry. The root mean square (RMS) values of the image coordinates of the Ground Control Points (GPCs) varied from 0...

متن کامل

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

Region-based 3d Surface Reconstruction Using Images Acquired by Low-cost Unmanned Aerial Systems

Accurate 3D surface reconstruction of our environment has become essential for an unlimited number of emerging applications. In the past few years, Unmanned Aerial Systems (UAS) are evolving as low-cost and flexible platforms for geospatial data collection that could meet the needs of aforementioned application and overcome limitations of traditional airborne and terrestrial mobile mapping syst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016